

Fiche méthode Évaluer l'incertitude d'une mesure à partir de la documentation du constructeur pour un appareil numérique

Exemple: Je mesure une tension continue avec un voltmètre modèle MX 22

ECHNICAL CHARACTERISTICS		MX 26	MX 24B	MX 23	MX 22
DC voltages					
	Ranges	0.5 - 5 - 50 - 500 1,000 V	0.5 - 5 - 50 - 500 1,000 V	0.5 - 5 - 50 - 500 1000 V	40 - 400 mV 4 - 40 - 400 - 600 V
Resolution		0.1 mV to 1 V	0.1 mV to 1 V	0.1 mV to 1 V	0.01 mV to 1 V
Basic accuracy*		0.3% rdg + 2 digits	0.3% rdg + 2 digits	0.3% rdg + 2 digits	0.3% rdg + 2 digit
Input impedance		10 ΜΩ (11 ΜΩ/ 5V)	10 ΜΩ (11 ΜΩ/ 5V)	10 ΜΩ (11 ΜΩ/ 5V)	1.5 MΩ (40 mV) 40 MΩ (400 mV) 8 MΩ
	Protection	±1,100 VPEAK 775 VRMS	±1,100 VPEAK (600 VRMS/0.5 V)	±1,100 VPEAK (600 VRMS/0.5 V)	600 VRMS

- 1. J'identifie le modèle de mon instrument de mesure
- 2. Je repère la grandeur mesurée
- 3. Je lis la valeur affichée avec son unité
- **4.** Je recherche dans la notice, la formule d'évaluation de l'incertitude Δ (précision de base dans la notice)

1. Modèle: MX 22

2. Grandeur mesurée : le commutateur est sur V_{DC}. C'est une tension continue

3. Valeur affichée : **14,84 V**

4. Formule d'évaluation de l'incertitude :

L: Valeur lue L = 14,84 V 0,3 % L = 0,3/100 × 14,84 = 0,04452 pas d'arrondi pendant la phase de calcul D: Digit ou quantum. Il s'agit de la plus petite variation possible de l'affichage. D = 0,01 V certains constructeurs utilisent d'autres termes tels que : UR, q, d,...

Incertitude de tension : $\Delta U = 0.04452 + 2 \times 0.01 = 0.06452 \text{ V}$

Le voltmètre affiche le millième de volt. L'incertitude exprimée suit la même règle en se limitant à un ou deux chiffres significatifs maximum.

Ici, on arrondi 0,06452 à 0,064. On a donc : $\Delta U = 0,064 V$

Incertitude-type de tension
$$u(U) = \frac{\Delta U}{\sqrt{3}} = \frac{0.064}{\sqrt{3}} = 0,037 \ V$$

Remarque : les constructeurs parlent souvent de « précision » qui est un terme commercial qui désigne un demiintervalle qui n'est pas l'incertitude-type.