

Lien entre mathématiques et physique :

Les vecteurs

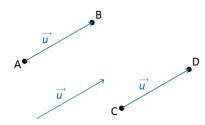
1. Quelques différences d'approche entre mathématiques et physique

1.1. Le point d'origine du vecteur

En mathématiques :

On distingue:

- le vecteur, notée avec une lettre (par exemple \vec{u})
- son représentant dans le plan, délimité par deux points, par exemple \overrightarrow{AB} .



 \vec{u} n'a pas d'origine.

 \overrightarrow{AB} est **son représentant d'origine** A et dont B est le point d'arrivée.

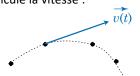
 \overrightarrow{CD} est **un autre représentant** du même vecteur \overrightarrow{u} , avec le point d'origine C.

En physique:

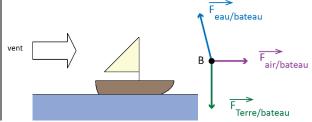
- On ne fait pas de distinction entre le vecteur et son représentant dans le plan car le vecteur est une grandeur physique qui peut ne pas être une distance.
- Selon la grandeur physique représentée, l'origine du vecteur peut avoir une importance.

Exemples:

Le vecteur-vitesse a pour point d'origine le point dont on calcule la vitesse :



Le vecteur-force n'a pas d'origine (puisqu'il désigne une force répartie sur une surface ou un volume). On représente donc les vecteurs-force à partir d'un même point, choisi arbitrairement car cela facilite la compréhension et les éventuels calculs.



1.2. La norme ou la valeur du vecteur

En mathématiques :

– La norme est définie à partir des coordonnées du vecteur. Pour un vecteur $\vec{u}(x;y)$ la norme vaut :

$$\|\vec{u}\| = \sqrt{x^2 + y^2}$$

- La norme est par définition une valeur absolue.
- Sauf indication contraire elle n'a pas d'unité.

En physique:

- Le mot « norme » est rarement employé, on lui préfère le mot « valeur ».
- La notation « || || » est très rarement utilisée. La norme du vecteur est notée avec le symbole de la grandeur, sans la flèche.

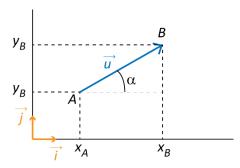
Exemples:

- $F_{A/B}$ pour la valeur d'une force ;
- v(M) pour la valeur d'une vitesse ;
- La norme d'un vecteur est la valeur d'une grandeur physique. Elle a donc l'unité de cette grandeur.

Exemples:

- ▶ Le vecteur $\overrightarrow{F_{A/B}}$ a une norme $F_{A/B}$ en newton.
- Le vecteur $\overrightarrow{v(M)}$ a une norme v(M) en m · s⁻¹

1.3. Expression des coordonnées d'un vecteur



$$\overrightarrow{AB} \begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix} = \begin{pmatrix} \| \overrightarrow{AB} \| \times \cos(\alpha) \\ \| \overrightarrow{AB} \| \times \sin(\alpha) \end{pmatrix}$$

Souvent utilisé en mathématiques

Souvent utilisé en physique.

Exemple: vecteur-vitesse initial du projectile:

$$\overrightarrow{v_0} \begin{pmatrix} v_{0x} = v_0 \cos(\alpha) \\ v_{0y} = v_0 \sin(\alpha) \end{pmatrix}$$

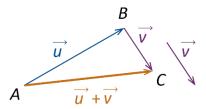
2. Utile pour la physique : addition et soustraction des vecteurs

Soient \vec{u} et \vec{v} deux vecteurs :

2.1. Additionner des vecteurs

L'addition de ces deux vecteurs s'effectue de la manière suivante :

- L'un des deux vecteurs à additionner doit être translaté afin que son point d'origine coïncide avec l'extrémité de l'autre (ci-dessous c'est \vec{v} qui est translaté).
- La relation de Chasles énonce que : $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{BD}$
- Le tracé de $\vec{u} + \vec{v}$ donne donc :



2.2. Soustraire deux vecteurs

Pour tracer $\vec{u} - \vec{v}$, on additionne \vec{u} et $-\vec{v}$.

Le vecteur $-\vec{v}$ est un vecteur de même norme, même direction que \vec{v} mais de sens opposé.

Le tracé de $\vec{u}-\vec{v}$ s'effectue donc ainsi :

