

Activités de la séquence n°7

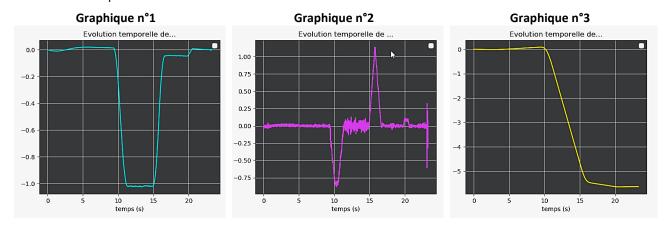
Mouvements : position, vitesse et accélération

-

Fiches de synthèse mobilisées :

Fiche n°7: Mouvements: position, vitesse et accélération

Sommaire des activités


ACTIVITÉ 1 :	retour sur le mouvement d'un ascenseur	1
	mouvement d'une boule de pétanque – version avec tableur	
	mouvement d'une boule de pétanque - version avec programme Python	
	le mouvement de la planète Vénus : un mouvement uniforme et accéléré l	5

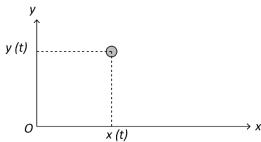
ACTIVITÉ 1: retour sur le mouvement d'un ascenseur

Rappel de la situation :

Lors de la séquence 5 en classe de 1ère, nous avons enregistré le mouvement d'un ascenseur entre deux étages, à l'aide de l'accéléromètre d'un téléphone portable. Le mouvement de celui-ci était rectiligne et vertical et ses positions repérées sur un axe Oz vertical, orienté vers le haut et dont l'origine correspond à l'altitude de l'étage de départ. Un programme de traitement nous a permis d'obtenir les tracés des évolutions temporelles de la coordonnée de position verticale z, de la coordonnée v_v du vecteur-vitesse ainsi que de la coordonnée a_v du vecteur accélération.

Voici les résultats que nous avons obtenus :

- 1. On voit qu'il manque une légende sur chacun de ces graphiques. Lequel représente z(t) ? Lequel représente $v_z(t)$ et lequel représente $a_z(t)$?
- 2. L'ascenseur était-il en montée ou en descente ? Justifier de deux manières au moins, à l'aide de deux de ces graphiques (plusieurs choix sont possibles).
- **3.** On appellera « vitesse de croisière » la vitesse, supposée constante, que l'ascenseur finit par atteindre lorsqu'il transite entre deux étages. Pendant quelle durée a-t-il gardé sa vitesse de croisière ? Justifier de trois manières, en exploitant successivement chacun de ces trois graphiques.
- **4.** Que vaut sa vitesse de croisière ? Justifier cette valeur de deux manières différentes, en exploitant deux des graphiques ci-dessus.


5. Ces trois figures représentent un point de l'ascenseur pendant trois phases de son mouvement. Compléter chacune d'elles en représentant, d'une couleur le vecteur-vitesse et, d'une autre, le vecteur-accélération. On ne respectera pas d'échelle particulière.

Juste après le démarrage : En vitesse de croisière : En arrivant à l'étage visé :

 A_{\bullet} A_{\bullet}

ACTIVITÉ 2: mouvement d'une boule de pétanque – version avec tableur

On étudie dans cette activité le mouvement d'une boule de pétanque après qu'elle a quitté la main du lanceur. Son mouvement est repéré dans un repère (0, x, y) dont l'origine est au niveau du sol et à la verticale du point d'où la boule quitte la main du lanceur :

Les valeurs de t, x(t) et y(t) sont rassemblées dans la feuille de calcul « BoulePetanque ».

Description du mouvement

Travail à effectuer avec le tableur :

 Représenter graphiquement les positions successives de la boule de pétanque de manière à obtenir une représentation semblable à une chronophotographie (ne pas relier les points).

Exploitation:

- 1. On peut décomposer le mouvement de la boule de pétanque en quatre phases. Pour chacune de ces phases, qualifier le mouvement à l'aide des termes « rectiligne / curviligne » et « accéléré / décéléré ».
- 2. À quelle date la boule de pétanque touche-t-elle le sol ? Exploiter les données enregistrées pour répondre.
- **3.** Ce lancé de boule de pétaque a été effectué sur un terrain où alternent des portions de sol dur et des portions de sol sableux : quelles sont les zones que traverse la boule de pétanque pendant sa phase de roulement et dans quel ordre ? Justifier sommairement à l'aide du graphique.

Tracé des coordonnées du vecteur-vitesse

Travail à effectuer avec le tableur :

- Insérer deux colonnes intitulées « vx » et « vy » et saisir les formues permettant le calcul approché des coordonnées du vecteur-vitesse (voir document ci-après).
- Dans le même repère, représenter graphiquement v_x et v_y en fonction du temps.

Exploitation:

- 4. Comment peut-on retrouver, à l'aide ces courbes, la date à laquelle la boule de pétanque atteint le sol ?
- **5.** À quelle date la boule de pétanque atteint-elle le sommet de sa trajectoire ? Justifier à l'aide d'une des courbes représentant les coordonnées du vecteur-vitesse.
- **6.** À quelle date la boule de pétanque, au cours de son roulement, atteint-elle le sol sableux ? Justifier à l'aide d'une des courbes représentant les coordonnées du vecteur-vitesse.

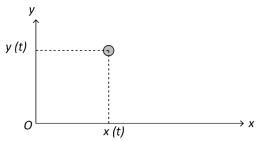
En conclusion de cette partie, représenter le vecteur-vitesse de la boule (sans respecter d'échelle particulière) aux dates : t = 0.2 s ; t = 0.55 s ; t = 1 s ; t = 1.5 s et t = 2.5 s.

DOCUMENT : relations approchées entre position et vitesse

Les relations exactes entre les coordonnées de position et les coordonnées du vecteur-vitesse sont :

$$v_x(t) = \frac{dx}{dt}(t)$$
 et $v_y(t) = \frac{dy}{dt}(t)$

 $v_x(t)=\frac{dx}{dt}(t) \qquad \text{et} \qquad v_y(t)=\frac{dy}{dt}(t)$ L'application de ces relations suppose de connaître l'expression de v_x et v_y en fonction du temps. Si l'on ne dispose que d'une série de valeurs, notées v_1, v_2, \dots, v_n , on peut utiliser cette approximation, d'autant plus juste que Δt est faible :


$$v_{xn} pprox rac{x_{n+1}-x_n}{t_{n+1}-t_n}$$
 et $v_{yn} pprox rac{y_{n+1}-y_n}{t_{n+1}-t_n}$

Tracé des coordonnées du vecteur-accélération

- En s'inspirant de l'approximation utilisée pour calculer les valeurs approchées de v_x et v_y , proposer des relations permettant de calculer de manière approchée les coordonnées a_x et a_y du vecteur-accélération.
- **9.** Avec le tableur, créer deux colonnes « ax » et « ay » contenant les valeurs des coordonnées a_x et a_y du vecteur accélération. Les représenter graphiquement en fonction du temps dans le même repère.
- 10. Justifier, à l'aide de ces courbes, l'affirmation : « pendant sa phase de vol, la boule de pétanque est animée d'un mouvement uniformément accéléré ».
- 11. Exploiter ces courbes pour représenter le vecteur-accélération de la boule de pétanque aux mêmes dates que celle évoquées dans la question 7 : t = 0.2 s ; t = 0.55 s ; t = 1 s ; t = 1.5 s et t = 2.5 s.
- 12. En comparant les vecteurs \vec{v} et \vec{a} : comment peut-on justifier que le mouvement de la boule de pétanque soit décéléré lors de sa dernière phase ?
- 13. Comment peut-on retrouver, à l'aide des courbes $a_x(t)$ et $a_y(t)$, la date à laquelle le sol sableux est atteint ?

ACTIVITÉ 3 : mouvement d'une boule de pétanque - version avec programme Python

On étudie dans cette activité le mouvement d'une boule de pétanque après qu'elle a quitté la main du lanceur. Son mouvement est repéré dans un repère (0, x, y) dont l'origine est au niveau du sol et à la verticale du point d'où la boule quitte la main du lanceur :

Les valeurs de t, x(t) et y(t) sont rassemblées dans le fichier « Positions_petanque.txt », exploitable avec le programme Python « Petanque_ELEVE.py ». Ces deux fichiers doivent être enregistrés dans le même dossier.

Description du mouvement

Travail à effectuer avec le programme Python :

- Ouvrir le programme « Petanque_ELEVE.py » avec un éditeur dédié au langage Python. Celui n'est que partiellement achevé, nous allons le compléter.
- Exécuter ce programme et, lorsque cela est demandé, sélectionner le fichier « Positions petanque.txt » qui contient les valeurs de t, x(t) et y(t).
- On étudie dans un premier temps le graphique tracé en haut de la fenêtre : il représente y en fonction de x dans un repère orthonormé : il s'agit donc des positions de la boule de pétanque.

Exploitation:

- 1. On peut décomposer le mouvement de la boule de pétanque en quatre phases. Pour chacune de ces phases, qualifier le mouvement à l'aide des termes « rectiligne / curviligne » et « accéléré / décéléré ».
- 2. À quelle date la boule de pétanque touche-t-elle le sol ? Exploiter les données enregistrées pour répondre.
- **3.** Ce lancé de boule de pétaque a été effectué sur un terrain où alternent des portions de sol dur et des portions de sol sableux : quelles sont les zones que traverse la boule de pétanque pendant sa phase de roulement et dans quel ordre ? Justifier sommairement à l'aide du graphique.

Tracé des coordonnées du vecteur-vitesse

Travail à effectuer avec le programme Python :

- Fermer le graphique et afficher à nouveau le code Python à compléter. La ligne n°68 génère la liste des valeurs de la coordonnée v_x du vecteur-vitesse : l'instruction « vx . append (...) » signifie « ajoute à la liste vx... ».
- Remplacer la ligne 69 par le code permettant le calcul des valeurs de v_y , coordonnée verticale du vecteur-vitesse.
- La ligne 74 demande de tracer v_x en fonction du temps. Remplacer la ligne 75 par une autre demandant le tracé de v_y en fonction du temps, d'une autre couleur.
- Exécuter le programme pour vérifier qu'il fonctionne : les deux courbes $v_x(t)$ et $v_y(t)$ doivent désormais s'afficher dans le repère en bas à gauche de l'écran.

Compréhension du programme :

- 4. Revenir au code du programme.
 La variable « Nbre_Mesures » contient le nombre de triplettes de t, x et y enregistrés. Pourquoi, ligne 67, les calculs ne sont-ils effectués que (Nbre Mesures 1) fois ?
- **5.** Pourquoi la ligne 71 est-elle nécessaire ?
- **6.** Les relations utilisées lignes 68 et 69 permettent-elles un calcul exact ou un calcul approché des valeurs de v_x et v_y ? Que faudrait-il faire pour en améliorer la justesse?

Exploitation:

Exécuter à nouveau le programme : on étudie à présent les représentations des coordonnées v_x et v_y en fonction du temps.

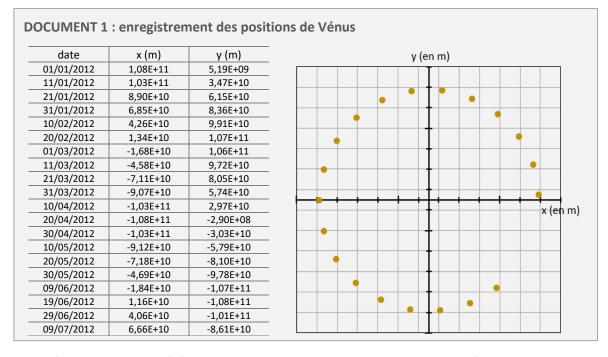
- 7. Comment peut-on retrouver, à l'aide ces courbes, la date à laquelle la boule de pétanque atteint le sol ?
- **8.** À quelle date la boule de pétanque atteint-elle le sommet de sa trajectoire ? Justifier à l'aide d'une des courbes représentant les coordonnées du vecteur-vitesse.
- 9. À quelle date la boule de pétanque, au cours de son roulement, atteint-elle le sol sableux ? Justifier à l'aide d'une des courbes représentant les coordonnées du vecteur-vitesse.
- **10.** En conclusion de cette partie, représenter le vecteur-vitesse de la boule (sans respecter d'échelle particulière) aux dates : t = 0.2 s ; t = 0.55 s ; t = 1 s ; t = 1.5 s et t = 2.5 s.

Tracé des coordonnées du vecteur-accélération

Travail à effectuer avec le programme Python :

- Fermer le graphique et afficher à nouveau le code Python à compléter. À partir de la ligne 90 et en s'inspirant du code permettant le calcul et le tracé des coordonnées du vecteur-vitesse (lignes 66 à 80), écrire le code permettant le tracé des coordonnées a_x et a_y du vecteur-accélération.

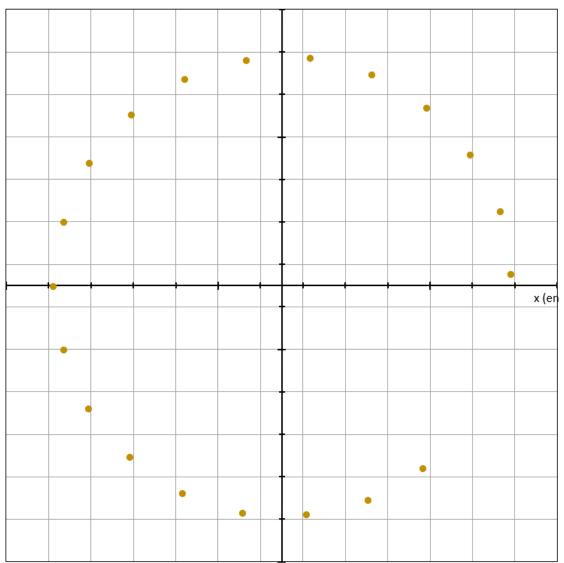
Exploitation:


- **11.** Justifier, à l'aide de ces courbes, l'affirmation : « pendant sa phase de vol, la boule de pétanque est animée d'un mouvement uniformément accéléré ».
- **12.** Exploiter ces courbes pour représenter le vecteur-accélération de la boule de pétanque aux mêmes dates que celle évoquées dans la question 7: t = 0.2 s; t = 0.55 s; t = 1.5 s et t = 2.5 s.
- **13.** En comparant les vecteurs \vec{v} et \vec{a} : comment peut-on justifier que le mouvement de la boule de pétanque soit décéléré lors de sa dernière phase ?
- **14.** Comment peut-on retrouver, à l'aide des courbes $a_x(t)$ et $a_y(t)$, la date à laquelle le sol sableux est atteint ?

ACTIVITÉ 4 : le mouvement de la planète Vénus : un mouvement uniforme... et accéléré !

Dans le référentiel héliocentrique, les trajectoires des planètes sont légèrement elliptiques, sauf celle de Vénus qui est très voisine du cercle.

Cette activité a pour but d'étudier le mouvement du centre de Vénus dans le référentiel héliocentrique.


- 1. Justifier qualitativement, à l'aide du document ci-dessus, que le mouvement de Vénus autour du Soleil est bien circulaire uniforme.
- 2. À partir du document 1, déterminer la durée Δt , en secondes, séparant deux positions enregistrées successives de Vénus.
- **3.** On appelle période révolution d'une planète la durée écoulée pendant qu'elle effectue une révolution autour du Soleil. Que vaut la période de révolution de Vénus ?
- **4.** Calculer la valeur de la vitesse v de Vénus en exploitant le document ci-dessus. Plusieurs méthodes sont possibles.
- 5. Sur l'annexe (page suivante) : représenter trois vecteurs-vitesse de Vénus (attention à bien les tracer tangents à la trajectoire) :
 - $\overrightarrow{v_1}$ à la date 21/03/2012 ;
 - $\overrightarrow{v_2}$ à la date 31/03/2012;
 - $\overrightarrow{v_3}$ à la date 10/04/2012.

Échelle de représentation des vitesses : 1 cm \leftrightarrow 1×10⁴ m·s⁻¹

- **6.** Nous allons tracer de manière approchée le vecteur-accélération de Vénus selon l'approximation centrée, décrite dans le document 2. À quelle(s) date(s) pouvons-nous tracer le vecteur-accélération à partir de trois vecteurs-vitesse précédents ?
- **7.** Suivre la démarche indiquée dans le document 2 pour construire le vecteur-accélération de Vénus à la date choisie à la question 5.
 - Échelle de représentation des accélérations : 1 cm \leftrightarrow 3×10⁻³ m·s⁻²
- **8.** En suivant la même démarche que celle des question 4 à 6, tracer le vecteur-accélération du centre de Vénus à une autre date.
- 9. Peut-on dire que le mouvement de Vénus soit uniformément accéléré ? Pourquoi ?
- 10. On parle d'accélération « radiale » et « centripète » : que signifie chacun de ces deux termes ?

Annexe à compléter pour le tracé :

DOCUMENT 2 : tracé approché d'un vecteur-accélération avec la « méthode centrée »

La méthode approchée donnée dans la fiche de synthèse pour le tracé d'un vecteur-accélération est parfois insuffisante lorsque l'on souhaite obtenir un vecteur dont la direction soit bien respectée. On utilise alors la méthode « centrée » qui donne de meilleurs résultats. Celle-ci consiste, pour une date donnée, à tracer un vecteur-accélération moyen calculé entre la date précédente et la date suivante : ainsi la date étudiée est centrée entre les deux dates entre lesquelles on effectue une moyenne. La relation approchée est donc :

$$\overrightarrow{a_n} \approx \frac{\overrightarrow{v_{n+1}} - \overrightarrow{v_{n-1}}}{2\Delta t}$$

La méthode est alors la suivante :

- tracer le vecteur-vitesse $\overrightarrow{v_{n-1}}$ à la date précédente et le vecteur-vitesse $\overrightarrow{v_{n+1}}$ à la date suivante ;
- tracer le vecteur $\overrightarrow{\Delta v} = \overrightarrow{v_{n+1}} \overrightarrow{v_{n-1}}$;
- mesurer sa norme $||\overrightarrow{\Delta v}||$ (attention à bien tenir compte de l'échelle des vitesses);
- − en déduire la valeur de l'accélération $a \approx \Delta v/2\Delta t$;
- tracer le vecteur-accélération de norme a et de mêmes direction et sens que $\overrightarrow{\Delta v}$.