Chapitre 3 Conductimétrie

Fiche liée à cette activité :

Fiche de synthèse chapitre 3

ACTIVITÉ 5 : Conductivité et constante d'équilibre

Matériel disponible et données

- Conductimètre avec une solution étalon.
- Solution aqueuse S_1 d'acide éthanoïque de concentration molaire C_1 = 5,00.10⁻² mol. L⁻¹
- Béchers.
- Pipettes jaugées de différents volumes (5,0 mL; 10,0 mL; 20,0 mL; 25,0 mL) ainsi qu'une propipette.
- Fioles jaugées 50,0 mL et 100,0 mL
- Conductivités molaires ioniques à 25°C en mS.m².mol-1: λ (CH₃COO) = 4,09 λ (H₃O+) = 34,97
 - 1. A partir de la solution aqueuse d'acide éthanoïque à $C_1 = 5,00.10^{-2}$ mol. L⁻¹, proposer un protocole de dilution permettant d'obtenir :
- une solution aqueuse S₂ d'acide éthanoïque de concentration C₂ = 1,00.10-2 mol. L-1
- une solution aqueuse S₃ d'acide éthanoïque de concentration C₃ = 5,00.10⁻³ mol. L⁻¹

Après validation par le professeur, procéder aux dilutions.

2. A l'aide d'un conductimètre étalonné, mesurer la conductivité de chacune des solutions S₁, S₂ et S₃.

Solution	Concentration	Conductivité
S ₁	$C_1 = 5,00.10^{-2} \text{ mol. L}^{-1}$	
S ₂	$C_2 = 1,00.10^{-2} \text{ mol. L}^{-1}$	
S ₃	C ₃ = 5,00.10 ⁻³ mol. L ⁻¹	

- 3. Ecrire la réaction acide-base entre l'acide éthanoïque et l'eau.
- **4.** En appliquant la loi de Kohlrausch, exprimer la concentration des ions oxonium $[H_3O^+]_{\acute{e}q}$ en fonction de la conductivité σ de la solution et des conductivités molaires ioniques λ (CH₃COO $^-$) et λ (H₃O⁺).
- **5.** Après avoir complété le tableau d'avancement de la réaction étudiée, donner l'expression de la constante d'équilibre K en fonction de $[H_3O^+]_{\text{éq}}$ et de C (concentration molaire initiale en acide CH_3COOH).
- 6. Calculer alors la valeur de K pour chacune des solutions S₁, S₂ et S₃. Conclure.
- 7. Comment faire varier la valeur de K?